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Abstract
Machine learning (ML) models, particularly decision tree (DT)-based algorithms, are 
being increasingly utilized for flood susceptibility mapping. To evaluate the advantages of 
DT-based ML models over traditional statistical models on flood susceptibility assessment, 
a comparative study is needed to systematically compare the performances of DT- based 
ML models with that of traditional statistical models. New Orleans, which has a long his-
tory of flooding and is highly susceptible to flooding, is selected as the test bed. The pri-
mary purpose of this study is to compare the performance of multiple DT-based ML mod-
els namely DT, Adaptive Boosting (AdaBoost), Gradient Boosting (GdBoost), Extreme 
Gradient Boosting (XGBoost) and Random Forest (RF) models with a traditional statistical 
model known as Frequency Ratio (FR) model in New Orleans. This study also aims to 
identify the main drivers contributing to flooding in New Orleans using the best perform-
ing model. Based on the most recent Hurricane Ida-induced flood inventory map and nine 
crucial flood conditioning factors, the models’ accuracies are tested and compared using 
multiple evaluation metrics. The findings of this study indicate that all DT-based ML mod-
els perform better compared to FR. The RF model emerges as the best model (AUC = 0.85) 
among all DT-based ML models in every evaluation metrics. This study then adopts the RF 
model to simulate flood susceptibility map (FSM) of New Orleans and compares it with 
the prediction of FR model. The RF model also demonstrates that low elevation and higher 
precipitation are the main factors responsible for flooding in New Orleans. Therefore, this 
comparative approach offers a significant understanding about the advantages of advanced 
ML models over traditional statistical models in local flood susceptibility assessment.

Keywords Flood susceptibility mapping · Machine learning · Random forest · Frequency 
ratio · New Orleans

1 Introduction

Climate change is expected to intensify the frequency and severity of hydrological 
extremes such as flooding (Held and Soden 2006). From 2000 to 2018, a total of 2.23 
million  km2 area has been flooded around the world, consequently 255–290 million 
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people were directly affected (Tellman et al. 2021). Climate change is also expected to 
continue to drive substantial sea level rise throughout the twenty-first century (Sweet 
et al. 2022; Kopp et al. 2017). Coastal cities around the world are thus under enormous 
stress from climate change-driven events and long-term changes coupled with increas-
ing population and infrastructure concentrations (Brown et al. 2019; Wong et al. 2014; 
USGCRP 2018). In the United States (U.S.), with 280 million urban population, urban 
flooding can lead to immense social and economic damages (NAS 2019). For example, 
in 2005, the state of Louisiana witnessed devastating flood damages induced by Hur-
ricane Katrina resulting in around 1,067 reported fatalities. This disaster left 283,838 
houses fully destroyed, 73,172 with sustained major damages, and 69,763 with minor 
damages (FEMA 2006). Notably, in New Orleans, the flood damages to the residential 
properties are estimated in a total of $16 billion, while damages to the public structure 
and utilities such as roads, railroads, drainage, water defense and electricity network, 
totaled in $7 billion (Pistrika and Jonkman 2010). Meanwhile, the risk of coastal flood-
ing is projected to increase in the near future (Hallegatee et al. 2013). To ensure effec-
tive mitigation, it is imperative to identify the highly susceptible regions through the 
best quantitative method so that the limited resources can be concentrated at these areas.

A substantial amount of research has already been conducted on flood hazard map-
ping using a variety of geospatial techniques (e.g., Dano et  al. 2019; Das 2020; Hoque 
et  al. 2019; Khosravi et  al. 2016; Rahman et  al. 2021; Samanta et  al. 2018; Sarkar and 
Mondal 2020; Shahabi et al. 2020; Tehrany et al. 2014, 2015a; Tehrany and Kumar 2018) 
and hydraulic modeling (HEC-RAS) (Elkhrachy et al. 2021). Among all these geospatial 
techniques based bivariate statistical models such as, Shannon’s entropy, Weighting fac-
tor, Statistical index (Khosravi et  al. 2016) and Frequency Ratio (FR), the FR model is 
a widely used bivariate statistical model, establishing relationships between flood loca-
tions and the classes of different flood conditioning layers (Samanta et  al. 2018; Sarkar 
and Mondal 2020; Tehrany et al. 2015a; Rahmati et al. 2016). But FR is deemed a conven-
tional method for mapping flood susceptibility due to its simple formula and straightfor-
ward process, albeit time-consuming and laborious (Sahana et al. 2020). Due to the rapid 
progress in machine learning (ML) and computation power, the FR model has become 
less ideal over time (Wang et  al. 2020b). To date, an increasing number of researchers 
use more sophisticated empirical ML modelss to assess natural hazards risks. Some com-
mon algorithms include Decision Tree (DT) (Khosravi et al. 2018), Multivariate Logistic 
Regression (MLR) (Rahman et  al. 2019; Tehrany et  al. 2014), CART (classification and 
regression trees) (Abedi et al. 2022; Rahman et al. 2021), Support Vector Machine (SVM) 
(Sahana et al. 2020; Tehrany et al. 2015a), Random Forest (RF) ( Farhadi and Najafzadeh 
2021; Lee et al. 2017), Adaptive Boosting (AdaBoost) (Al-Abadi 2018), Gradient Boost-
ing (GdBoost) (Costache et al. 2020), Extreme gradient boosting (XGBoost) (Abedi et al. 
2022), Artificial Neural Network (ANN) (Falah et  al. 2019; Rahman et  al. 2019), Deep 
Learning (DL) (Shahabi et al. 2021), Convolutional Neural Network (CNN) (Wang et al. 
2020a). Among them, DT-based algorithms especially RF is considered as the standard 
machine learning algorithm for modeling flood susceptibility (Islam et al. 2021). The RF 
model offers numerous advantages over the other ML models for classification, including 
the ability to handle missing data and outliers, less susceptible to overfitting, capability 
of producing more accurate results by handling large volumes of datasets (Elmahdy et al. 
2020; Géron 2022; Lee et  al. 2017; Rodrigues and De la Riva 2014). Researchers have 
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applied both FR and DT-based ML models in a number of natural hazards susceptibility 
mapping studies and concluded DT-based ML models such as RF can perform better than 
FR by predicting more accurately.

In a study by Wang et al. (2020b), the performances of the FR and RF models for land-
slide susceptibility mapping were compared in Yunyang County, China, and it was found that 
the RF performed better compared to FR. Elmahdy et al. (2020) used RF and FR model to 
map land subsidence and sinkholes susceptibility in Al Ain area, UAE. RF was found to be 
highly accurate and required less time to generate results. Furthermore, Amare et al. (2021) 
adopted FR and RF models to assess the susceptibility of gully erosion in Ethiopia and found 
the accuracy of FR varies between good to average while the RF model achieved excellent 
accuracy. Han et al. (2020) examined the prediction accuracy of FR, DT and RF models for 
seismic vulnerability assessment in South Korea and revealed that the RF showed the highest 
accuracy. Thanh et al. (2022) mapped the groundwater potential zone in Kanchanaburi Prov-
ince of Thailand using FR, RF and AHP and compared their performances. They found the 
best performance from RF model. Some of the studies also found that RF outperformed other 
statistical models such as Logistic Regression and Bayes discriminant analysis for debris flow 
susceptibility mapping in Nyalam County, Tibet (Liang et al. 2020).

Despite a large number of studies using different machine learning models to map vari-
ous hazards susceptibilities, there however has been little research that explicitly compares 
the performances of DT-based ML models with the FR model for flood susceptibility map-
ping by considering multiple evaluation metrics. The main goal of this study is to address this 
knowledge gap. Thus, it aims to not only compare the accuracy of FR with that of multiple 
DT-based ML models in flood susceptibility but also identify the best performing ML model 
and its benefits. 

To do so, New Orleans, Louisiana in the United States is selected as the study area. New 
Orleans has experienced several high-impact floods historically and has received wide atten-
tion due to its enormous damages and losses to floods, especially during and since Hurricane 
Katrina (Keim and Muller 2009). Its geographic location that is largely below sea level, along 
with its vulnerable population, renders New Orleans highly susceptible to flooding (Cai et al. 
2016; Elliott and Pais 2006). Specifically, the primary rationale for selecting New Orleans is 
three-fold. First, Keim and Muller (1992 and 1993) show that heavy rainfall has been his-
torically a problem for the city, but particularly since the May 3rd flood of 1978. Since then, 
numerous heavy rainfalls have flooded the city. A recent example is the event that occurred 
on July 10, 2019, when an upper-level trough associated with Hurricane Barry produced 
100–200 mm of rain in 3 h, thereby flooding much of the French Quarter, Central Business 
District, and Uptown New Orleans (National Centers for Environmental Information 2019). 
Furthermore, Brown et al. (2019) demonstrated that rainfalls all across the Southeast, includ-
ing in New Orleans, are becoming shorter in duration and more intense over time, leading to 
more flash floods. Second, coastal Louisiana, in which New Orleans is located, is projected to 
have high flood risk in the next 30 years (Wing et al. 2022) and is among the most vulnerable 
locations in the world as it pertains to climate change. Third, New Orleans has a long history 
of social inequality and racial injustice, largely contributing to the disproportionately devastat-
ing impacts of and longer recovery from Hurricane Katrina among the socially vulnerable 
populations such as African Americans, people living in poverty, and the less educated (Finch 
et al. 2010). Hence, using New Orleans as a case study can provide critical lessons learned for 
coastal cities around the world.
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2  Data and methods

2.1  Datasets and sources

Multiple datasets were required in this study to conduct the comparative analysis of 
model performance and delineate flood susceptibility zones. A brief description of each 
dataset and its source, along with their output, is displayed in Table 1. The process of 
producing flood susceptibility maps is laid out in Fig. 1. Each of the following subsec-
tions specifically discusses each component.

2.2  Method

Flood susceptibility analysis can be divided into three major steps. These are: (1) pro-
ducing the flood inventory map; (2). preparing thematic layers of all flood conditioning 
factors (FCFs); (3) evaluating the model’s accuracy with multiple metrics and (4) flood 
susceptibility mapping.

2.2.1  Flood inventory map

A flood inventory map displays past locations of floods in a specific region, based on 
historical flood events. In the flood susceptibility analysis, the flood inventory map is 
considered the most essential element. According to Manandhar (2010), scientifi-
cally justified data of historical flood events are critical to identify flood susceptibility 
zones and predict future flood locations. Furthermore, the flood inventory map helps to 
identify relationships among FCFs (Rahman et  al. 2021). In this study, a recent 2021 
flood event in New Orleans induced by Hurricane Ida that struck coastal Louisiana 
on 29th August, 2021 (Beven et  al. 2022; Omer 2021) was considered to produce the 
flood inventory map. The entire process of developing a flood inventory map was con-
ducted on the Google Earth Engine (GEE; Gorelick et al. 2017) platform using JavaS-
cript API. Sentinel-1 SAR (Synthetic Aperture Radar) data have been used to extract 
flooded zones because of its fine spatial resolution (10 m) and cloud-penetrating quality. 
Atmospheric correction (spatial filtering) was required to reduce the ‘salt and pepper’ 
noise of the Sentinel-1 SAR raw imagery. To extract the flooded zone, several Senti-
nel-1 SAR images comprising pre-flood and post-flood period were considered in this 
study. These pre-flood images were combined together and post-flood images were com-
bined as well to obtain more precise surface water data. A division band ratio algo-
rithm was then applied to both stacked images to extract the total inundated area. Water 
pixels that appeared in both images (pre-flood and post-flood) were considered perma-
nent water bodies. Pixels that appeared as water bodies in post-flood images but did 
not show in pre-flood images were deemed as flood pixels (Islam and Sado 2000). In 
addition, to identify more precise flooded zones, the Global Surface Water dataset by 
Pekel et al. (2016) was masked out from the total inundated area. A total of 200 inven-
tory points were selected randomly, consisting of 100 points from flooded zones and 
100 points from areas outside the flooded zones. Flooded points were labeled as 1 while 
non-flooded points were labeled as 0. Based on previous research (Samanta et al. 2018; 
Sarkar and Mondal 2020), 70% of flood pixels were randomly selected from the flood 
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inventory points as training data, and the remaining 30% flood points were used as test-
ing data for validation.

The flood inventory map reveals that the potential flooded area due to Hurricane Ida is 
about 10.8  km2 in New Orleans (Fig. 2). Most flooding points were found to be in the prox-
imity of Lake Saint Catherine and some flood pixels were detected inside the downtown 
area alongside the Mississippi River.

2.2.2  Flood conditioning factors (FCFs)

Flood conditioning factors refer to variables that have direct or indirect influences on flood 
occurrences. To map the flood susceptibility zones, it is essential to identify relevant FCFs 
and to categorize their impacts on flood occurrences (Kia et  al. 2012). Therefore, based 
on an extensive literature review (e.g. Dano et al. 2019; Das 2020; Hoque et al. 2019; Kia 
et al. 2012; Rahman et al. 2019, 2021; Rahmati et al. 2016; Samanta et al. 2018; Sarkar and 
Mondal 2020), a total of nine conditioning factors of flooding from several domains (e.g., 
topographical, anthropogenic, climatic, and hydrological) were selected. Later, a multicol-
linearity analysis using Pearson correlation was conducted among the nine factors to check 
if there were any severe correlations existing among them. The findings from Pearson’s 
correlation analysis demonstrate that no correlation values were found above 0.80, suggest-
ing the absence of multicollinearity among the FCFs (Fig. 3).

Fig. 1  Conceptual and methodological framework
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Following multicollinearity analysis, nine FCFs including elevation, slope, aspect, pre-
cipitation, land use land cover (LULC), normalized difference vegetation index (NDVI), 
drainage density, topographic wetness index (TWI) and soil texture layers are collected 
from different sources (Table 1). A brief description of each FCFs is given on Table 2 with 
their Max-Min value or classes for New Orleans.

Since these FCFs had different spatial resolution and geographic coordinate system 
(GCS), The layers with coarse resolutions were resampled into 10 m and converted into 
GCS NAD 1983 using ArcGIS Pro 2.8 software to match their spatial scale and GCS with 
others.

Figure 4 displays the spatial distribution of each FCF across New Orleans. A vast area 
in New Orleans has a low elevation, even below sea level within levee protection (Fig. 4a), 
low slope (Fig. 4b), and flat aspect (Fig. 4c) rendering it at high risk of flooding. Relatively 
high elevations are found adjacent to the Mississippi River, which comprise the natural 
levee of the river. Artificial levees are erected on top of the natural levees to protect the city 
from river flooding. With 112.40  km2 of urban land, 223.72  km2 of forest land, 86.82  km2 
of grassland, 57.81  km2 of barren land, and 142.19  km2 of water bodies, New Orleans city 
historically grew outward from the hub in the western part which includes Downtown and 
historic French Quarter (Fig.  4e). Precipitation tends to be slightly concentrated in the 
south and eastern part of New Orleans (Fig. 4d). TWI values are high in the New Orleans 
east area and especially along elongated water bodies such as the lake Saint Catherine and 

Fig. 2  Flood inventory map of 2021 Hurricane Ida induced flood in New Orleans. Blue color represents 
the potential flooded areas, Cyan color represents the waterbodies, Red points represents flood points and 
Green points represents non-flood points
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Mississippi River (Fig. 4h). Meanwhile, the drainage density tends to be higher across the 
urban areas and along water bodies in the western part of New Orleans because of the bowl 
shape, low elevations, and lack of topographic relief. In addition, most of New Orleans is 
covered with clay loam (ClLo) and sand clay loam (SaClLo) soil (Fig. 4i). SaClLo soil tex-
ture is considered highly susceptible to flooding (Rahmati et al. 2016). The NDVI values 
are high along the Mississippi River are relatively high within vegetated parts of the urban 
areas (Fig. 4f) as well.

2.2.3  Adopted models for flood susceptibility mapping

2.2.3.1 Frequency ratio FR model, a traditional statistical method, was first adopted to 
prepare the flood susceptibility map (FSM) of New Orleans. The FR critically analyzes the 
contribution of each class of each FCF on potential future flooding (Lee et al. 2012; Rahmati 
et al. 2016; Samanta et al. 2018; Sarkar and Mondal 2020).

Fig. 3  Multicollinearity analysis via Pearson correlation matrix among flood conditioning factors
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To conduct FR analysis, it was necessary to reclassify all the thematic layers of factors into 
several classes (Table 3). The Natural breaks classification method by Jenks (1967) was used 
in several layers based on their class types and values.

Later, 70% flood pixels from the flood inventory map were used to train the FR model. 
The FR values were measured by calculating the ratio of percentages of flood pixels for each 
class to the percentage of total pixels for that particular class (Tehrany and Kumar 2018). The 
FR values for each class of every flood conditioning factor was calculated using the following 
Eq. 3:

where  FRi is the frequency ratio value for class i of each factor variable. Fpixi represents 
the number of flood pixels for i class and Tpixi represents the total number of actual pixels 
of that i class. n represents the total number of classes for each FCF. After calculating the 
 FRi values, they were summed up to calculate flood susceptibility index (FSI). The formula 
of FSI-FR is given below on Eq. 4:

(3)FRi =
Fpixi∕

∑n

i=1
Fpixi

Tpixi∕
∑n

i=1
Tpixi

(4)FSI − FR =

n
∑

j=1

FRi

Fig. 4  Thematic layers of flood conditioning factor used in flood susceptibility mapping. a Elevation, b 
Slope, c Aspect, d Precipitation, e LULC, f NDVI, g Drainage density, h TWI, and i Soil texture
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where j is each FCF considered in this study and n is the total number of FCFs. Later, natu-
ral breaks were used for reclassification after summing up the FSI-FR because it is consid-
ered the most suitable when there are big ‘leaps’ in the data (Ayalew and Yamagishi 2005). 
FSI-FR values were accordingly classified into five major categories (i.e., very low, low, 
moderate, high, and very high). The entire process of FSI-FR calculation was conducted 
using ArcGIS Pro 2.8 software.

2.2.4  Multiple decision tree‑based algorithms

In this study, five decision tree-based (DT-based) ML model were adopted such as DT, 
AdaBoost, GDBoost, XGBoost, and RF. These DT-based ML models were run with their 
default parameter on the Jupyter Notebook using Python language. A brief description of 
each DT-based ML models is provided below.

2.2.5  Decision tree

DT is a versatile ML model that can effectively solve classification, regression, and multi-
output tasks, as well as can handle complex datasets (Géron 2022). It is a widely used ML 
model due to its simplicity. This model has a tree-like structure that splits data into differ-
ent branches depending on input feature. Each DT includes root nodes, child nodes, and 
leaf nodes where the final predictions come from the leaf nodes (Han et al. 2020). Addi-
tionally, it offers several benefits such as the ability to handle large multi-dimensional data-
sets, the ability to identify homogenous clusters with various susceptibility levels and abil-
ity to predict outcomes by detecting complex feature relationships (Tehrany et al. 2013). 
In this study, DT model was conducted by importing DecisionTreeClassifier from SciKit 
Learn package (Pedregosa et al. 2011).

2.2.6  Adaptive boosting

Adaptive Boosting, also known as Adaboost, is an ensemble ML model that combines sev-
eral weak learners into a strong learner with each new predictor by paying more atten-
tion to fixing the mistakes of its predecessor (Géron 2022; Madhuri et al. 2021). Initially a 
subset from the training set and a classifier-based tree (e.g., a DT) is built, assuming equal 
weight for all instances in AdaBoost model. Then, the model predicts instances and adjust 
relative weight of misclassified ones while keeping the weight unchanged of correctly clas-
sified instance during each iteration. Next, the weight of all the instances is normalized and 
a new subset is formed through random sampling to build the next classifier-based model. 
This iterative process continues until it meets terminated conditions (Al-Abadi 2018; Tien 
Bui et al. 2016). Through this process a weak learner turns into a strong learner by gradu-
ally making it better. In this study, the Adaboost algorithm was applied using AdaBoost-
Classifier from SciKit Learn package (Pedregosa et al. 2011).

2.2.7  Gradient boosting (GdBoost)

GdBoost is a ML model that sequentially add predictors to an ensemble of DT where 
each tree fixed the errors made by its previous one (Géron 2022). It incorporates gradi-
ent descent optimization to fit the trees by minimizing loss function and recalibrating the 
weight of training samples in each iteration. This model is capable of effectively solving 
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classification problems if the target variables are categorical and regression problems if 
the target variables are continuous, while also handling complicated nonlinear relation-
ship between input feature and output variables (Costache et  al. 2020). These attribute 
makes this model more suitable for flood forecasting based on multiple FCFs (Ghanim 
et  al. 2023). The GradientBoostingClassifier was imported from SciKit Learn package 
(Pedregosa et al. 2011) to conduct the GdBoost classification.

2.2.8  Extreme gradient boosting (XGboost)

XGboost is a scalable tree boosting ML model that is specifically created to achieve fast 
and high performance (Hasanuzzaman et al. 2022). XGBoost differs from other methods 
by generating a series of sequential decision trees, instead of averaging independent trees. 
Each tree is built using the prediction errors or residuals of the previous tree model (Abedi 
et al. 2022). It utilizes tree pruning with many tunable parameters which helps to prevents 
overfitting, handle missing data and improve overall prediction accuracy (Hasanuzzaman 
et al. 2022; Madhuri et al. 2021). This study imported XGBClassifier from xgboost module 
to predict flood susceptibility.

2.2.9  Random Forest (RF)

RF is one of the most powerful ensemble ML model introduced by Breiman (2001). The 
RF algorithm is a versatile algorithm that can be used to solve a wide range of classifica-
tion and regression tasks (Géron 2022). RF employs bagging method, also known as boot-
strap aggregating sampling, to selects subsets randomly from the training set and constructs 
multiple decision trees for all of them. Bootstrapping sampling is the sampling method of 
selecting a random subset with replacement from a total dataset. For each bootstrap sam-
ple, one decision tree is grown by recurrently splitting the data based on the best split that 
has less impurity (Elmahdy et al. 2020). Each decision tree in the RF generates a predic-
tion at its leaf nodes (Farhadi and Najafzadeh 2021).The final prediction is determined by 
the majority votes (for classification) or average votes (for regression) found from all deci-
sion trees (Géron 2022; Lee et  al. 2017). RF offer several advantages such as enhanced 
accuracy, ability to reveal features importance, ability to avoid overfitting, ability to handle 
large and high dimensional data, ability to effectively deal with missing values and outli-
ers inside the predictor variables (Amare et  al. 2021; Elmahdy et  al. 2020; Farhadi and 
Najafzadeh 2021; Youssef et al. 2022). Most importantly each feature can act as the predic-
tor during the segmentation process in RF (Wang et al. 2020c).

In this study, the RF classifier was run by importing RandomForestClassifier from 
SciKit Learn package (Pedregosa et al. 2011). Later, the feature_importances function was 
utilized to reveal the importance of different FCFs on flood occurrence in New Orleans 
city. To generate FSM, the probability of flood occurrence was simulated using predict_
proba function that creates flood susceptibility index (FSI) for each pixel. FSI-RF model 
is range between 0 and 1, where 0 indicates nonprobability of flooding and 1 indicates 
probability of flooding. Hence, the pixels with a values closer to 1 are very high flood 
susceptible while the pixels with a value closer to 0 are very low flood susceptible. There-
fore, the equal interval method was chosen to categorize FSI-RF into five distinct classes, 
namely very low (0–0.2), low (0.2–0.4), moderate (0.4–0.6), high (0.6–0.8), and very high 
(0.8–1.0) susceptibility using ArcGIS Pro 2.8.
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This study also utilized 2022 US census data and calculated the exposed populations 
residing in high flood prone areas classified by FR and RF model.

2.2.10  Accuracy assessment of FR and multiple DT‑based ML models

In this study, the receiver operating characteristic (ROC) curve was considered to compare the 
performance of FR model with that of multiple DT-based ML models in flood susceptibility 
mapping. The ROC curve is a universal scientific method to assess the accuracy level of any 
prediction models because of its accessible and transparent way of indicating accuracy (Sarkar 
and Mondal 2020; Tehrany et al. 2013).

The process of validation for FR model was implemented using testing flood pixels data 
and predicted FSM in ROC tool of ArcSDM toolbox. The process of ROC-AUC for the mul-
tiple DT-based ML models was conducted using plot_roc_curve tools from the SciKit learn 
package (Pedregosa et al. 2011) on Python.

The X axis of the ROC curve represents false positive rate (FPR) (1- specificity) (Eq. 5) 
and the y axis represents true positive rates (TPR) (sensitivity) (Eq. 6). Where, TP = true posi-
tive; FP = false positive; TN = true negative; FN = false negative.

This research also conducted multiple accuracy assessments including confusion matrix, 
K-Fold cross validation, overall accuracy, precision score, recall and F-1 score, to identify the 
optimal model among DT-based ML models. K-Fold cross validation is a technique to eval-
uate ML models, especially when dealing with limited data samples (Madhuri et al. 2021). 
K-fold cross validation process is the best to way validate limited data by dividing itself into 
K equally sized subsets where one subset is used as a testing set and the rest of K-1 subsets 
are used as training sets. This study adopted 5-Fold cross validation to identify the best model 
among DT-based ML models. The overall accuracy calculates the total correct prediction of 
flood and non-flood pixels, precision score quantifies the ratio of classified flood pixels and 
actual flood pixels, recall scores assess only correctly classified flood pixels among all cor-
rectly classified pixel and F-1 score is the harmonic average of precision and recall score (Han 
et al. 2020). The formula to assess overall accuracy, precision score, recall score and F-1 score 
are given on Eqs. 7–10 respectively. 

(5)X axis = FPR (1 − specificity) = 1−
[

TN

TN + FP

]

(6)Y axis = TPR (sensitivity) =
[

TP

TP + FN

]

(7)Overallaccuracy =
TP + TN

TP + FP + TN + FN

(8)Precisionscore =
TP

TP + FP

(9)Recallscore =
TP

TP + FN
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3  Results

3.1  Performance evaluations of multiple DT‑based ML models against FR model

The AUC value of ROC curve was higher for RF model (0.85) in comparison with 
the FR model (AUC = 0.72) DT model (AUC = 0.73), AdaBoost model (AUC = 0.74), 
GDBoost model (AUC = 0.83), XGBoost model (AUC = 0.84) (Fig.  5). Based on the 
ROC-AUC  curve, it can be concluded that all the DT-based models have performed 
better than the FR model.

This study also determined the optimal ML model through the construction of confu-
sion matrix and the assessment of multiple evaluation metrics including K-Fold cross vali-
dation, overall accuracy, precision score, recall score and F1 score.

Utilizing the confusion matrix with a sample of 60 testing data points reveals that RF 
model demonstrates the highest counts of True Positive (TP) of 24 and True negative 
(TN) of 24 (Fig. 6e). This model also achieved highest TPR of 82.75% with lowest FPR of 
22.6% followed by AdaBoost with TPR (80.1%) and FPR (31.4%), DT with TPR (79.1%) 
and FPR (33.4%), XGBoost with TPR (78.5%) and FPR(28.1%), and lastly GdBoost with 
TPR (75.1%) and FPR (31.2%).

In the context of multiple evaluation metrics, RF emerged as a superior model in com-
parison to others decision-tree based ML models (Fig.  7). For example, the analysis of 
K-fold cross validation (fivefold) reveals that RF achieved the highest mean score of 0.80 
outperforming XGBoost (0.77), GdBoost (0.75), AdaBoost (0.73) and DT (0.71). Fur-
thermore, RF consistently showed the highest accuracy values in other evaluation metrics 
including overall accuracy (0.80), precision score (0.77), recall score (0.82) and F1 score 
(0.80) (Fig. 7). Since RF model performed the best among all DT-based ML models, this 
study considered the results of RF model to be further compared with FR results.

(10)F − 1 score =
(2 × Precision × Recall)

(Precision + Recall)

Fig. 5  ROC curve for FR and RF model. X axis represents false positive rate and Y axis represents true 
positive rate
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3.2  Impact of each flood conditioning factor on flood occurrence

Figure 8 illustrates the impact of different FCFs on the occurrence of flooding. The find-
ings from the RF model indicate that elevation has the highest impact (30.78%) on flooding 

Fig. 6  Confusion matrix of multiple decision tree-based ML models

Fig. 7  Accuracy assessment results of DT-based ML models from multiple evaluation metrics
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while precipitation has the second highest impact (19.53%) on the occurrence of floods in 
New Orleans. Furthermore, NDVI contributed 15.07%, TWI accounted for 7.69%, drain-
age density had 6.42% impact, soil texture affected by 6.38%, and slope had 6.17% impact 
on flood occurrence in New Orleans.

Moreover, LULC showed the lowest impact (3.43%), and aspect had the second lowest 
impact (4.51%) on flooding. Combined, elevation and precipitation accounted for 50.31% 
of the total flood susceptibility.

3.3  Comparison of results from the frequency ratio and random forest models

Overlaying various thematic layers of FCFs with the flood inventory map yields the FSMs 
from both the FR and RF models (Fig. 9). Depending on the flood susceptibility scores 
from the FR and RF models respectively, the entire city of New Orleans has been classified 
into five categories ranging from very low to very high. Overall, the eastern part of the city 
has higher flood susceptibility (in both models) compared to the western part, especially 
areas surrounding Lake Saint Catherine. In the urban area, several pockets have moderate 
flooding risks. In particular, neighborhoods to the north of the Mississippi River, such as 
part of the central business district (CBD), Audubon, uptown, and the Garden District, are 
faced with moderate to high flooding risks. Several neighborhoods to the east of the CBD, 
such as Bywater, St. Claude, and Holy Cross are at similarly elevated flood susceptibility. 
The Lower Ninth Ward, which has received wide attention in the aftermath of Hurricane 
Katrina, is currently at a low to moderate susceptibility of flooding in both models.

Based on the flood susceptibility results from the FR model, about 18.52% (114.51  km2) 
of New Orleans city is classified as a very low susceptibility zone, 29.57% (182.79  km2) as 
a low susceptibility zone, 25.94% (160.37km2) as a moderate susceptibility zone, 17.46% 
(107.93  km2) as a high susceptibility zone, and 8.51% (52.61  km2) as a very high suscepti-
bility zone (Table 4).

Fig. 8  Impact of flood conditioning factors on flooding in New Orleans
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The study also reveals that 34.64% of the total population in of New Orleans are area 
exposed to very high and high flood susceptible zones (25.97% areas of New Orleans) 
according to the FR model, while 23.21% of the total population are exposed to high and 
very high susceptible zones (20.14% of the total area), according to the RF model

In comparison, the RF model categorizes approximately 32.23% (199.24  km2) of the 
New Orleans region as having a very low susceptibility, 28.79% (178.01  km2) as low sus-
ceptibility, 18.84% (116.45  km2) as moderate susceptibility, 10.86% (67.12  km2) as high 
susceptibility, and 9.28% (57.37  km2) as very high susceptibility (Table  4). The biggest 
differences of results generated by both models lie in the very low susceptibility (18.52% 
vs. 32.23%) and high susceptibility (17.46% vs. 10.86%). The FR model overestimated the 
high susceptibility area to be much larger, and very low susceptibility area substantially 
smaller, compared to the RF model.

Fig. 9  The flood susceptibility maps of New Orleans city. a FSM produced by FR model. b FSM produced 
by RF model

Table 4  Spatial distribution of different flood susceptibility zones in New Orleans city

Susceptibility 
categories

FR RF

Estimated susceptible 
area  (km2)

% Of area Estimated susceptible 
area  (km2)

% Of area

Very low 114.51 18.52 199.24 32.23
Low 182.79 29.57 178.01 28.79
Moderate 160.37 25.94 116.45 18.84
High 107.93 17.46 67.12 10.86
Very high 52.61 8.51 57.37 9.28
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4  Discussion

The discussion of this study covers two primary aspects. First, it compares the performance 
of FR model with that of DT based ML models in flood susceptibility assessment. Second, 
it discusses the primary contributing factors to flood occurrence and distribution of flood 
susceptibility zones in New Orleans.

The interactions between flood occurrence and FCFs are complex and non-linear. When 
dealing with complex and non-linear interactions between predictors and target variables, 
ML models surpass conventional statistical models in terms of accuracy (Goetz et  al. 
2015). To validate this assertion, this study compared the performances of multiple DT-
based ML models with a statistical model (FR) using ROC AUC curve. Every DT-based 
ML model showed better classification performance compared to the FR model, as evi-
denced with higher AUC values (Fig.  5). This finding is consistent with previous stud-
ies that assessed different natural hazards susceptibilities. For instance, many researchers 
observed that the RF model outperformed the statistical models in landslide susceptibility 
assessment (Akinci and Zeybek 2021; Wang et al. 2020b), land subsidence and sinkholes 
susceptibility mapping (Elmahdy et al. 2020), seismic vulnerability assessment (Han et al. 
2020), wildfire susceptibility mapping (Oliveira et al. 2012), groundwater potentiality map-
ping (Thanh et al. 2022) and debris flow susceptibility mapping (Liang et al. 2020).

The superior accuracy of DT-based ML models over the conventional FR model are likely 
due to a few facts. First, the straightforward formula of the statistical FR model oversimpli-
fies the interactions between flood points and FCFs by neglecting non-flood points and solely 
depends on the total weight or class weights that makes this model prone to underfitting (Sha-
habi et al. 2020). Furthermore, most of the statistical models are based on the assumption of 
linearity, which is often violated by the relations between flood occurrence and various FCFs. 
These relationships have complex, dynamic and non-linear structures in nature. On the con-
trary, ML models can detect the existence of non-linear trends and can effectively handle non-
linear relationships between any feature and the input variables (Oliveira et al. 2012; Tehrany 
et al. 2015b). Moreover, as our study shows, ML models take non-flood point into considera-
tion along with flood point to ensure more balanced predictions. Second, standalone statistical 
models are less efficient in handling high dimensional large datasets (Amare et al. 2021). On 
the other hand, combining ML models into an ensemble can provide higher accuracies with 
large and high dimensional datasets than any standalone statistical models. Third, statistical 
models require data preprocessing and they are less efficient in dealing with multicollinearity 
issues among independent variables while ML models such as RF do not require any preproc-
essing and can effectively solve the multi-collinearity automatically (Liang et al. 2020).

While RF model shows the highest accuracy in ROC curve (AUC = 0.85), this study con-
ducted a more comprehensive accuracy assessment employing various evaluation metrics 
to verify if the RF indeed stands out as the best model among all DT-based ML models. 
Through this comprehensive analysis of multiple evaluation metrics, it become evident that 
the RF model has emerged as the top performing ML model in flood susceptibility assess-
ment (Figs. 6, 7). In the RF model, each tree divides the factors in pairs and then their predic-
tions are aggregated, which makes each factor’s contribution to prediction more independently. 
Consequently, even if some trees indicate dependent factors, others suppress them and yield 
the best results (Akinci and Zeybek 2021). Some other exceptional characteristics of the RF 
model, including proficiency of detecting the non-linear trends, insensitivity to noise, abil-
ity to reduce errors caused by missing data and outliers, ability to resolve multicollinearity, 
adaptability to both numerical or categorical data, make this model more robust and accurate 
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comparatively (Amare et al. 2021; Breiman 2001; Liang et al. 2020; Rodrigues and De la Riva 
2014; Youssef et al. 2022). Taking all these findings and facts into account, the RF model can 
be deemed as the benchmark model for accurately mapping flood susceptibility at a local scale 
(Islam et al. 2021).

Furthermore, the RF model can rank each conditioning factor based on its contribution 
to flooding (Fig. 8). According to the results, low elevation and high precipitation in New 
Orleans contributed most to flooding. In southern Louisiana, and New Orleans in particu-
lar, small changes (of a meter or two) in elevation often mean the difference between being 
flooded or not. The region is deltaic, built from sediments from the Mississippi River. It 
is therefore relatively flat, low-lying, and some sections of the city are maintained within 
the levee protection system that are below mean sea level (MSL). The range in elevation 
runs from approximately 5.8 m above MSL to (-) 3.7 m below MSL (Campanella 2006). 
As such, these small variations in sea level largely determine which regions experience the 
highest frequency of flooding. Variations in precipitation were also found to explain a large 
proportion of the variance. This is likely related to the geographic precipitation pattern. 
The water bodies surrounding New Orleans promote a more stable atmosphere around the 
perimeter of New Orleans, while the urban environment promotes more rain towards the 
center of the city. This ultimately leads to higher flood susceptibility in some of the lower-
lying locations within the city. The most populated area in this city is below sea level, ren-
dering it highly vulnerable to flooding. Although a large levee system has been long con-
structed to provide residents protection from flooding, the levees have failed significantly 
numerous times in recent history, during Hurricane Betsy (1965), Camille (1969), and 
Katrina (2005) (Cass et al. 2023). Meanwhile, New Orleans has experienced an increas-
ing number of heavy rainfall events (Brown et al. 2019; Keim and Muller 1992 and 1993; 
Powell and Keim 2015). Due to its major contribution to flood susceptibility, this unset-
tling increasing trend of extreme precipitation calls for special attention from planners and 
policy makers.

This study further used FR and RF models to generate FSMs of New Orleans and estimate 
exposed populations in areas with high flood susceptibility. Both models suggested that the 
eastern part of the city, particularly the areas surrounding Lake Saint Catherine, have higher 
susceptibility to flooding compared to the western part. The RF model classified a large por-
tion of the western part as having very low susceptibility, whereas the FR model categorized 
them as low to moderate susceptibility, therefore, they disagreed in this case. The FR model 
exhibited a notable difference in estimation compared to RF model due to its low classification 
accuracy and oversimplified algorithmic approach. The FR model categorized 25.97% of areas 
as very high and high flood susceptible, where 34.64% of the total population resides, appears 
to be an overestimation. Conversely, the RF model delineated a more reasonable estimation of 
20.14% areas as very high and high flood susceptible wherein 23.21% of the populations are 
the potential exposed.

5  Conclusion

Using New Orleans as a test bed, this study systematically compared the performance of 
statistical FR model with that of DT-based ML models in flood susceptibility mapping. 
Several key findings stand out from this research.
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• DT-based ML models performed better than the conventional statistical FR model. 
This highlights their abilities to identify the nonlinear trends between flooding and 
FCFs effectively, which the FR model oversimplifies the relationships.

• A comprehensive performance evaluation using various metrics affirmed the RF 
model as the most accurate among the DT-based ML models for flood susceptibility 
mapping at a local scale.

• Several FCFs such as elevation and precipitation patterns were identified as the 
dominant contributors to flooding in New Orleans.

• Both RF and FR models indicate higher flood susceptibility in the eastern part of 
the city compared to the western part, but the FR model overestimated percentage of 
exposed populations (34.64%) in very high and high susceptible zone compared to 
RF model (23.21%).

Several implications can be drawn from this study. This study highlighted the importance 
of integrating ML models into the flood disaster risk reduction framework, especially at a local 
scale like New Orleans. Such integration of advanced ML models will not only contribute 
to increasing our knowledge about flood hazards but also inform future research in this area. 
It also provides actionable insights for policy makers and other practitioners by identifying 
significant factors of flooding such as low elevation and high precipitation in New Orleans. 
Moreover, the simulated FSM will serve as a valuable tool for the local disaster management 
authority throughout all phases of flood management including long-term mitigation, prepara-
tion, emergency response, and recovery. The use of ML models in urban flood susceptibility 
mapping can guide planners in future urban developments, by accurately identifying regions 
characterized as highly susceptible to flooding. By avoiding intense development of housing 
and infrastructure in the high-susceptible areas, immense economic losses can be prevented. 
The integration of ML models into the disaster risk reduction framework can also guide effec-
tive and equitable allocation of resources for disaster preparation and inform the development 
of disaster resilience infrastructure by prioritizing areas at heightened susceptibility. Policy 
makers can ensure the availability of flood-resistant infrastructure and emergency services in 
these highly susceptible regions to facilitate more efficient flood management strategies.

In the meantime, it is important to note that there are several limitations to this research. 
For instance, this study gathered flood inventory points solely from Sentinel-1 SAR dataset. 
As ML models are heavily dependent on the quality of the training data and any inaccuracies 
in the training data can produce misleading outcomes. Cross-examination of flood inventory 
points from multiple sources for training can be beneficial to ensure more reliable predictions. 
Furthermore, each geographic region has a unique set of FCFs. The primary contributing fac-
tors of flood susceptibility are likely different elsewhere. When moving to another area, FCFs 
that are unique to the local geography should be considered. Last, this study only considered 
physical geographical factors such as elevation and precipitation in flood susceptibility assess-
ment. In order to assess flood risk, which is the outcome of the interaction of physical and 
social factors, social vulnerability needs to be considered. Future studies therefore should con-
sider incorporating socioeconomic data for comprehensive flood risk assessment using more 
comprehensive target variables such as flood damages to train the models.
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